NN4N: Neural Network for Numerics
Android App
NN4N: Neural Network for Numerics
Android App
Ex1(Regression): ax^2+b
Training Data File
a ,b ,x ,Ex1: ax^2+b
+0.0,-1.0,-1.0, -1.00
+0.0,-1.0,-0.8, -1.00
+0.0,-1.0,-0.6, -1.00
+0.0,-1.0,-0.4, -1.00
+0.0,-1.0,-0.2, -1.00
+0.0,-1.0,+0.0, -1.00
+0.0,-1.0,+0.2, -1.00
+0.0,-1.0,+0.4, -1.00
+0.0,-1.0,+0.6, -1.00
+0.0,-1.0,+0.8, -1.00
+0.0,-1.0,+1.0, -1.00
+0.0,-0.5,-1.0, -0.50
+0.0,-0.5,-0.8, -0.50
+0.0,-0.5,-0.6, -0.50
+0.0,-0.5,-0.4, -0.50
+0.0,-0.5,-0.2, -0.50
+0.0,-0.5,+0.0, -0.50
+0.0,-0.5,+0.2, -0.50
+0.0,-0.5,+0.4, -0.50
+0.0,-0.5,+0.6, -0.50
+0.0,-0.5,+0.8, -0.50
+0.0,-0.5,+1.0, -0.50
+0.0,+0.0,-1.0, +0.00
+0.0,+0.0,-0.8, +0.00
+0.0,+0.0,-0.6, +0.00
+0.0,+0.0,-0.4, +0.00
+0.0,+0.0,-0.2, +0.00
+0.0,+0.0,+0.0, +0.00
+0.0,+0.0,+0.2, +0.00
+0.0,+0.0,+0.4, +0.00
+0.0,+0.0,+0.6, +0.00
+0.0,+0.0,+0.8, +0.00
+0.0,+0.0,+1.0, +0.00
+0.0,+0.5,-1.0, +0.50
+0.0,+0.5,-0.8, +0.50
+0.0,+0.5,-0.6, +0.50
+0.0,+0.5,-0.4, +0.50
+0.0,+0.5,-0.2, +0.50
+0.0,+0.5,+0.0, +0.50
+0.0,+0.5,+0.2, +0.50
+0.0,+0.5,+0.4, +0.50
+0.0,+0.5,+0.6, +0.50
+0.0,+0.5,+0.8, +0.50
+0.0,+0.5,+1.0, +0.50
+0.0,+1.0,-1.0, +1.00
+0.0,+1.0,-0.8, +1.00
+0.0,+1.0,-0.6, +1.00
+0.0,+1.0,-0.4, +1.00
+0.0,+1.0,-0.2, +1.00
+0.0,+1.0,+0.0, +1.00
+0.0,+1.0,+0.2, +1.00
+0.0,+1.0,+0.4, +1.00
+0.0,+1.0,+0.6, +1.00
+0.0,+1.0,+0.8, +1.00
+0.0,+1.0,+1.0, +1.00
+0.5,-1.0,-1.0, -0.50
+0.5,-1.0,-0.8, -0.68
+0.5,-1.0,-0.6, -0.82
+0.5,-1.0,-0.4, -0.92
+0.5,-1.0,-0.2, -0.98
+0.5,-1.0,+0.0, -1.00
+0.5,-1.0,+0.2, -0.98
+0.5,-1.0,+0.4, -0.92
+0.5,-1.0,+0.6, -0.82
+0.5,-1.0,+0.8, -0.68
+0.5,-1.0,+1.0, -0.50
+0.5,-0.5,-1.0, +0.00
+0.5,-0.5,-0.8, -0.18
+0.5,-0.5,-0.6, -0.32
+0.5,-0.5,-0.4, -0.42
+0.5,-0.5,-0.2, -0.48
+0.5,-0.5,+0.0, -0.50
+0.5,-0.5,+0.2, -0.48
+0.5,-0.5,+0.4, -0.42
+0.5,-0.5,+0.6, -0.32
+0.5,-0.5,+0.8, -0.18
+0.5,-0.5,+1.0, +0.00
+0.5,+0.0,-1.0, +0.50
+0.5,+0.0,-0.8, +0.32
+0.5,+0.0,-0.6, +0.18
+0.5,+0.0,-0.4, +0.08
+0.5,+0.0,-0.2, +0.02
+0.5,+0.0,+0.0, +0.00
+0.5,+0.0,+0.2, +0.02
+0.5,+0.0,+0.4, +0.08
+0.5,+0.0,+0.6, +0.18
+0.5,+0.0,+0.8, +0.32
+0.5,+0.0,+1.0, +0.50
+0.5,+0.5,-1.0, +1.00
+0.5,+0.5,-0.8, +0.82
+0.5,+0.5,-0.6, +0.68
+0.5,+0.5,-0.4, +0.58
+0.5,+0.5,-0.2, +0.52
+0.5,+0.5,+0.0, +0.50
+0.5,+0.5,+0.2, +0.52
+0.5,+0.5,+0.4, +0.58
+0.5,+0.5,+0.6, +0.68
+0.5,+0.5,+0.8, +0.82
+0.5,+0.5,+1.0, +1.00
+0.5,+1.0,-1.0, +1.50
+0.5,+1.0,-0.8, +1.32
+0.5,+1.0,-0.6, +1.18
+0.5,+1.0,-0.4, +1.08
+0.5,+1.0,-0.2, +1.02
+0.5,+1.0,+0.0, +1.00
+0.5,+1.0,+0.2, +1.02
+0.5,+1.0,+0.4, +1.08
+0.5,+1.0,+0.6, +1.18
+0.5,+1.0,+0.8, +1.32
+0.5,+1.0,+1.0, +1.50
+1.0,-1.0,-1.0, +0.00
+1.0,-1.0,-0.8, -0.36
+1.0,-1.0,-0.6, -0.64
+1.0,-1.0,-0.4, -0.84
+1.0,-1.0,-0.2, -0.96
+1.0,-1.0,+0.0, -1.00
+1.0,-1.0,+0.2, -0.96
+1.0,-1.0,+0.4, -0.84
+1.0,-1.0,+0.6, -0.64
+1.0,-1.0,+0.8, -0.36
+1.0,-1.0,+1.0, +0.00
+1.0,-0.5,-1.0, +0.50
+1.0,-0.5,-0.8, +0.14
+1.0,-0.5,-0.6, -0.14
+1.0,-0.5,-0.4, -0.34
+1.0,-0.5,-0.2, -0.46
+1.0,-0.5,+0.0, -0.50
+1.0,-0.5,+0.2, -0.46
+1.0,-0.5,+0.4, -0.34
+1.0,-0.5,+0.6, -0.14
+1.0,-0.5,+0.8, +0.14
+1.0,-0.5,+1.0, +0.50
+1.0,+0.0,-1.0, +1.00
+1.0,+0.0,-0.8, +0.64
+1.0,+0.0,-0.6, +0.36
+1.0,+0.0,-0.4, +0.16
+1.0,+0.0,-0.2, +0.04
+1.0,+0.0,+0.0, +0.00
+1.0,+0.0,+0.2, +0.04
+1.0,+0.0,+0.4, +0.16
+1.0,+0.0,+0.6, +0.36
+1.0,+0.0,+0.8, +0.64
+1.0,+0.0,+1.0, +1.00
+1.0,+0.5,-1.0, +1.50
+1.0,+0.5,-0.8, +1.14
+1.0,+0.5,-0.6, +0.86
+1.0,+0.5,-0.4, +0.66
+1.0,+0.5,-0.2, +0.54
+1.0,+0.5,+0.0, +0.50
+1.0,+0.5,+0.2, +0.54
+1.0,+0.5,+0.4, +0.66
+1.0,+0.5,+0.6, +0.86
+1.0,+0.5,+0.8, +1.14
+1.0,+0.5,+1.0, +1.50
+1.0,+1.0,-1.0, +2.00
+1.0,+1.0,-0.8, +1.64
+1.0,+1.0,-0.6, +1.36
+1.0,+1.0,-0.4, +1.16
+1.0,+1.0,-0.2, +1.04
+1.0,+1.0,+0.0, +1.00
+1.0,+1.0,+0.2, +1.04
+1.0,+1.0,+0.4, +1.16
+1.0,+1.0,+0.6, +1.36
+1.0,+1.0,+0.8, +1.64
+1.0,+1.0,+1.0, +2.00
+1.5,-1.0,-1.0, +0.50
+1.5,-1.0,-0.8, -0.04
+1.5,-1.0,-0.6, -0.46
+1.5,-1.0,-0.4, -0.76
+1.5,-1.0,-0.2, -0.94
+1.5,-1.0,+0.0, -1.00
+1.5,-1.0,+0.2, -0.94
+1.5,-1.0,+0.4, -0.76
+1.5,-1.0,+0.6, -0.46
+1.5,-1.0,+0.8, -0.04
+1.5,-1.0,+1.0, +0.50
+1.5,-0.5,-1.0, +1.00
+1.5,-0.5,-0.8, +0.46
+1.5,-0.5,-0.6, +0.04
+1.5,-0.5,-0.4, -0.26
+1.5,-0.5,-0.2, -0.44
+1.5,-0.5,+0.0, -0.50
+1.5,-0.5,+0.2, -0.44
+1.5,-0.5,+0.4, -0.26
+1.5,-0.5,+0.6, +0.04
+1.5,-0.5,+0.8, +0.46
+1.5,-0.5,+1.0, +1.00
+1.5,+0.0,-1.0, +1.50
+1.5,+0.0,-0.8, +0.96
+1.5,+0.0,-0.6, +0.54
+1.5,+0.0,-0.4, +0.24
+1.5,+0.0,-0.2, +0.06
+1.5,+0.0,+0.0, +0.00
+1.5,+0.0,+0.2, +0.06
+1.5,+0.0,+0.4, +0.24
+1.5,+0.0,+0.6, +0.54
+1.5,+0.0,+0.8, +0.96
+1.5,+0.0,+1.0, +1.50
+1.5,+0.5,-1.0, +2.00
+1.5,+0.5,-0.8, +1.46
+1.5,+0.5,-0.6, +1.04
+1.5,+0.5,-0.4, +0.74
+1.5,+0.5,-0.2, +0.56
+1.5,+0.5,+0.0, +0.50
+1.5,+0.5,+0.2, +0.56
+1.5,+0.5,+0.4, +0.74
+1.5,+0.5,+0.6, +1.04
+1.5,+0.5,+0.8, +1.46
+1.5,+0.5,+1.0, +2.00
+1.5,+1.0,-1.0, +2.50
+1.5,+1.0,-0.8, +1.96
+1.5,+1.0,-0.6, +1.54
+1.5,+1.0,-0.4, +1.24
+1.5,+1.0,-0.2, +1.06
+1.5,+1.0,+0.0, +1.00
+1.5,+1.0,+0.2, +1.06
+1.5,+1.0,+0.4, +1.24
+1.5,+1.0,+0.6, +1.54
+1.5,+1.0,+0.8, +1.96
+1.5,+1.0,+1.0, +2.50
+2.0,-1.0,-1.0, +1.00
+2.0,-1.0,-0.8, +0.28
+2.0,-1.0,-0.6, -0.28
+2.0,-1.0,-0.4, -0.68
+2.0,-1.0,-0.2, -0.92
+2.0,-1.0,+0.0, -1.00
+2.0,-1.0,+0.2, -0.92
+2.0,-1.0,+0.4, -0.68
+2.0,-1.0,+0.6, -0.28
+2.0,-1.0,+0.8, +0.28
+2.0,-1.0,+1.0, +1.00
+2.0,-0.5,-1.0, +1.50
+2.0,-0.5,-0.8, +0.78
+2.0,-0.5,-0.6, +0.22
+2.0,-0.5,-0.4, -0.18
+2.0,-0.5,-0.2, -0.42
+2.0,-0.5,+0.0, -0.50
+2.0,-0.5,+0.2, -0.42
+2.0,-0.5,+0.4, -0.18
+2.0,-0.5,+0.6, +0.22
+2.0,-0.5,+0.8, +0.78
+2.0,-0.5,+1.0, +1.50
+2.0,+0.0,-1.0, +2.00
+2.0,+0.0,-0.8, +1.28
+2.0,+0.0,-0.6, +0.72
+2.0,+0.0,-0.4, +0.32
+2.0,+0.0,-0.2, +0.08
+2.0,+0.0,+0.0, +0.00
+2.0,+0.0,+0.2, +0.08
+2.0,+0.0,+0.4, +0.32
+2.0,+0.0,+0.6, +0.72
+2.0,+0.0,+0.8, +1.28
+2.0,+0.0,+1.0, +2.00
+2.0,+0.5,-1.0, +2.50
+2.0,+0.5,-0.8, +1.78
+2.0,+0.5,-0.6, +1.22
+2.0,+0.5,-0.4, +0.82
+2.0,+0.5,-0.2, +0.58
+2.0,+0.5,+0.0, +0.50
+2.0,+0.5,+0.2, +0.58
+2.0,+0.5,+0.4, +0.82
+2.0,+0.5,+0.6, +1.22
+2.0,+0.5,+0.8, +1.78
+2.0,+0.5,+1.0, +2.50
+2.0,+1.0,-1.0, +3.00
+2.0,+1.0,-0.8, +2.28
+2.0,+1.0,-0.6, +1.72
+2.0,+1.0,-0.4, +1.32
+2.0,+1.0,-0.2, +1.08
+2.0,+1.0,+0.0, +1.00
+2.0,+1.0,+0.2, +1.08
+2.0,+1.0,+0.4, +1.32
+2.0,+1.0,+0.6, +1.72
+2.0,+1.0,+0.8, +2.28
+2.0,+1.0,+1.0, +3.00
Neural Network File
Neural Network for Numerics
Ver.1.0.42 : Corp Edition
// -----------------------------------------------------------------------------------------------
// TRAINING DATA ---------------------------------------------------------------------------------
FILE Ex1_Regression
SIZE 275
// -----------------------------------------------------------------------------------------------
// NEURAL NETWORK STRUCTURE ----------------------------------------------------------------------
3-9-9-9-1(Regression)
// -----------------------------------------------------------------------------------------------
// TRAINING RESULTS ------------------------------------------------------------------------------
DATE 2024-05-27 10:10:47
EPOCH 378747
COST 1.0000E-03 (Lowest Cost)
// -----------------------------------------------------------------------------------------------
// NEURAL NETWORK (Lowest Cost) -----------------------------------------------------------------
NEURON ,ITEM ,MAX ,MIN ,MEAN ,STDEVS ,MAE ,BIAS ,WEIGHT01 ,WEIGHT02 ,WEIGHT03 ,WEIGHT04 ,WEIGHT05 ,WEIGHT06 ,WEIGHT07 ,WEIGHT08 ,WEIGHT09 ,INPUT,OUTPUT
IL_01 ,a , 2.0000000E+00, 0.0000000E+00, 1.0000000E+00, 7.0839595E-01, , , , , , , , , , , ,1.0000000000000024,"=(RC[-1]-RC[-14])/RC[-13]/MAX(ABS((RC[-16]-RC[-14])/RC[-13]),ABS((RC[-15]-RC[-14])/RC[-13]))"
IL_02 ,b , 1.0000000E+00,-1.0000000E+00,-8.6736174E-19, 7.0839595E-01, , , , , , , , , , , ,-8.673617379884035E-19,"=(RC[-1]-RC[-14])/RC[-13]/MAX(ABS((RC[-16]-RC[-14])/RC[-13]),ABS((RC[-15]-RC[-14])/RC[-13]))"
IL_03 ,x , 1.0000000E+00,-1.0000000E+00, 4.3368087E-19, 6.3360860E-01, , , , , , , , , , , ,4.3368086899420177E-19,"=(RC[-1]-RC[-14])/RC[-13]/MAX(ABS((RC[-16]-RC[-14])/RC[-13]),ABS((RC[-15]-RC[-14])/RC[-13]))"
HL101 , , , , , , , 5.0158999E-01, 7.3705894E-01, 2.4171311E-01,-2.8652900E-01, , , , , , ,"=RC[-10]+MMULT(RC[-9]:RC[-7],R[-3]C[1]:R[-1]C[1])/3",=2*TANH(RC[-1])
HL102 , , , , , , , 2.2341728E-01,-1.5586479E-01,-3.2911732E-01,-7.3731611E-01, , , , , , ,"=RC[-10]+MMULT(RC[-9]:RC[-7],R[-4]C[1]:R[-2]C[1])/3",=2*TANH(RC[-1])
HL103 , , , , , , ,-5.1754273E-01, 7.3255655E-01, 8.4412182E-01, 1.0297646E-02, , , , , , ,"=RC[-10]+MMULT(RC[-9]:RC[-7],R[-5]C[1]:R[-3]C[1])/3",=2*TANH(RC[-1])
HL104 , , , , , , ,-9.8668250E-02,-3.8492620E-01,-5.7135762E-01,-3.1966034E-01, , , , , , ,"=RC[-10]+MMULT(RC[-9]:RC[-7],R[-6]C[1]:R[-4]C[1])/3",=2*TANH(RC[-1])
HL105 , , , , , , , 1.0031362E+00,-5.8079939E-01, 2.4968414E-02, 1.1916404E+00, , , , , , ,"=RC[-10]+MMULT(RC[-9]:RC[-7],R[-7]C[1]:R[-5]C[1])/3",=2*TANH(RC[-1])
HL106 , , , , , , , 5.8373275E-01, 5.0389069E-03,-4.3549795E-01, 1.4701579E+00, , , , , , ,"=RC[-10]+MMULT(RC[-9]:RC[-7],R[-8]C[1]:R[-6]C[1])/3",=2*TANH(RC[-1])
HL107 , , , , , , , 6.0333086E-01,-4.1348590E-01, 4.9133261E-01,-4.2509871E-02, , , , , , ,"=RC[-10]+MMULT(RC[-9]:RC[-7],R[-9]C[1]:R[-7]C[1])/3",=2*TANH(RC[-1])
HL108 , , , , , , , 5.6621782E-01,-2.4509391E-01, 2.5678860E-02,-1.4950915E+00, , , , , , ,"=RC[-10]+MMULT(RC[-9]:RC[-7],R[-10]C[1]:R[-8]C[1])/3",=2*TANH(RC[-1])
HL109 , , , , , , , 2.0897339E-01,-3.6553491E-01,-1.0060241E-01,-2.9890071E-01, , , , , , ,"=RC[-10]+MMULT(RC[-9]:RC[-7],R[-11]C[1]:R[-9]C[1])/3",=2*TANH(RC[-1])
HL201 , , , , , , , 4.7124403E-02,-4.2410028E+00, 3.2730107E-02, 3.1770945E-02, 4.0475887E+00,-1.9797369E+00, 2.1210216E+00, 2.2120577E+00,-7.1068348E+00,-4.1141544E+00,"=RC[-10]+MMULT(RC[-9]:RC[-1],R[-9]C[1]:R[-1]C[1])/9",=2*TANH(RC[-1])
HL202 , , , , , , , 5.8514475E-01, 4.1842077E+00,-4.0802892E+00, 7.8408520E-01,-4.2144949E+00,-6.8595624E-01, 7.0600523E+00, 9.4515181E-02, 8.3478886E-01, 4.1286330E+00,"=RC[-10]+MMULT(RC[-9]:RC[-1],R[-10]C[1]:R[-2]C[1])/9",=2*TANH(RC[-1])
HL203 , , , , , , , 1.7721956E-01, 2.0928873E+00, 7.7583719E-01,-2.1037645E+00,-2.0969568E+00, 4.1126862E+00, 4.1143293E+00, 7.0007235E+00, 4.1066997E+00, 7.6370676E-01,"=RC[-10]+MMULT(RC[-9]:RC[-1],R[-11]C[1]:R[-3]C[1])/9",=2*TANH(RC[-1])
HL204 , , , , , , ,-1.2379168E-01,-2.1174179E+00,-6.4178857E-01, 2.0826454E+00,-7.8529980E-01,-7.1329611E+00,-2.1910461E+00,-2.0629291E+00, 7.0269456E+00, 7.0376292E+00,"=RC[-10]+MMULT(RC[-9]:RC[-1],R[-12]C[1]:R[-4]C[1])/9",=2*TANH(RC[-1])
HL205 , , , , , , ,-3.2405294E-01, 7.4425608E-01,-7.0568224E+00, 7.0598494E+00,-7.0114843E+00, 7.4172950E-01,-7.6980919E-01,-7.0551465E+00,-2.2407539E+00, 2.0560114E+00,"=RC[-10]+MMULT(RC[-9]:RC[-1],R[-13]C[1]:R[-5]C[1])/9",=2*TANH(RC[-1])
HL206 , , , , , , ,-1.5435738E-02, 6.9535623E+00, 2.1119671E+00,-4.1532398E+00, 2.0769607E+00,-4.2082234E+00, 6.9851570E-01, 7.3718738E-01, 2.1241644E+00, 5.5917701E-02,"=RC[-10]+MMULT(RC[-9]:RC[-1],R[-14]C[1]:R[-6]C[1])/9",=2*TANH(RC[-1])
HL207 , , , , , , , 2.1047846E-01, 9.7192810E-02, 4.2082415E+00, 4.1368374E+00, 6.9863367E-01, 6.9176759E+00,-4.3184989E+00, 4.1363614E+00,-6.8332684E-01,-6.9679546E+00,"=RC[-10]+MMULT(RC[-9]:RC[-1],R[-15]C[1]:R[-7]C[1])/9",=2*TANH(RC[-1])
HL208 , , , , , , ,-2.8626753E-01,-7.0787394E-01,-2.1020977E+00,-8.1225129E-01, 7.0458556E+00, 2.0754614E+00, 1.4681968E-02,-4.1864750E+00,-3.4654947E-03,-2.1214195E+00,"=RC[-10]+MMULT(RC[-9]:RC[-1],R[-16]C[1]:R[-8]C[1])/9",=2*TANH(RC[-1])
HL209 , , , , , , ,-1.7395099E-01,-7.0269345E+00, 6.9852574E+00,-6.9646970E+00,-1.8871630E-02, 3.3378356E-03,-6.9904991E+00,-8.0361428E-01,-4.1442565E+00,-7.7947191E-01,"=RC[-10]+MMULT(RC[-9]:RC[-1],R[-17]C[1]:R[-9]C[1])/9",=2*TANH(RC[-1])
HL301 , , , , , , , 1.6870983E-01,-2.1353371E+00, 7.0363801E+00,-4.0738819E+00, 6.8573164E-03,-2.0999067E+00,-7.5214023E-01, 7.0233361E+00,-2.1104147E+00,-7.9492372E-01,"=RC[-10]+MMULT(RC[-9]:RC[-1],R[-9]C[1]:R[-1]C[1])/9",=2*TANH(RC[-1])
HL302 , , , , , , ,-2.6098916E-02, 2.1009780E+00,-4.1289400E+00, 6.9979360E+00,-7.6378507E-01,-7.0059020E+00, 7.6823571E-01,-4.1282324E+00,-6.9986637E+00, 5.6584272E-03,"=RC[-10]+MMULT(RC[-9]:RC[-1],R[-10]C[1]:R[-2]C[1])/9",=2*TANH(RC[-1])
HL303 , , , , , , ,-1.0119983E+00, 1.7317918E-01,-7.2233500E+00,-2.1825861E-01,-6.8098659E+00,-3.9294000E+00, 6.8548658E+00,-2.3609949E+00, 4.4244470E+00, 4.2537980E+00,"=RC[-10]+MMULT(RC[-9]:RC[-1],R[-11]C[1]:R[-3]C[1])/9",=2*TANH(RC[-1])
HL304 , , , , , , ,-3.5675166E-01,-6.8148557E+00,-2.1313862E+00,-8.4700978E-01,-4.2516515E+00, 7.2533729E+00,-8.3796643E-02,-7.1226441E+00,-6.0810359E-01,-4.1474540E+00,"=RC[-10]+MMULT(RC[-9]:RC[-1],R[-12]C[1]:R[-4]C[1])/9",=2*TANH(RC[-1])
HL305 , , , , , , , 4.9312556E-01,-4.4289890E+00, 9.5408345E-02, 8.6423396E-01, 2.1620016E+00, 3.7315747E+00, 4.3238986E+00, 4.1694443E+00, 6.7782758E-01, 1.7958653E+00,"=RC[-10]+MMULT(RC[-9]:RC[-1],R[-13]C[1]:R[-5]C[1])/9",=2*TANH(RC[-1])
HL306 , , , , , , ,-1.8529121E-01, 6.8266519E-01,-8.0827019E-01, 2.0577952E+00,-2.3402375E+00,-1.1808788E+00,-6.7699114E+00,-1.1257787E-01, 1.1357092E-01,-2.0321640E+00,"=RC[-10]+MMULT(RC[-9]:RC[-1],R[-14]C[1]:R[-6]C[1])/9",=2*TANH(RC[-1])
HL307 , , , , , , , 9.8929544E-02,-8.9237416E-01, 2.0952469E+00,-2.0773342E+00, 7.7940585E-01, 6.5907050E-01, 2.1551517E+00, 7.6147877E-01,-4.1470153E+00, 7.0475288E+00,"=RC[-10]+MMULT(RC[-9]:RC[-1],R[-15]C[1]:R[-7]C[1])/9",=2*TANH(RC[-1])
HL308 , , , , , , , 1.4544100E-01, 4.1114154E+00, 7.5646898E-01, 4.1349996E+00, 7.2204900E+00, 2.6769990E+00,-4.4468386E+00, 2.1765307E+00, 6.8887203E+00,-7.0663749E+00,"=RC[-10]+MMULT(RC[-9]:RC[-1],R[-16]C[1]:R[-8]C[1])/9",=2*TANH(RC[-1])
HL309 , , , , , , , 7.1064814E-02, 6.9938418E+00, 4.1563887E+00,-6.9646274E+00, 4.1033322E+00,-1.9058138E-02,-2.0878460E+00,-7.4981638E-01, 2.0904446E+00, 7.4048632E-01,"=RC[-10]+MMULT(RC[-9]:RC[-1],R[-17]C[1]:R[-9]C[1])/9",=2*TANH(RC[-1])
OL_01_R ,Ex1: ax^2+b , 3.0000000E+00,-1.0000000E+00, 4.0000000E-01, 8.7749644E-01, 2.1515164E-02,-3.4720483E-01,-4.1896839E+00,-1.7330082E-01,-1.6427166E+00,-1.5644764E+00, 3.9642270E+00, 1.9837465E+00, 7.1561331E-01, 7.2059694E+00,-6.9151374E+00,"=RC[-10]+MMULT(RC[-9]:RC[-1],R[-9]C[1]:R[-1]C[1])/9","=(2*RC[-1]/(1.0+ABS(RC[-1])))*MAX(ABS((RC[-16]-RC[-14])/RC[-13]),ABS((RC[-15]-RC[-14])/RC[-13]))*RC[-13]+RC[-14]"
Prediction Results